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LIRSTRACT

(Distribution Limitation Statement No. 2)

The purpose of the work repcrted here was to investigate nonsteady-state behavior

in the early stages of one-dimensional shock propagation. This behavior has been

termed stress relaxation. Th' work consisted of an expertmental phase and a

theoretical-computational phase. In the experimental phate, stress-time profiles

resulting from impact by a gas-gun projectile were observed in hard and soft 2024

aluminum and in polyethylene at various distances from the Vlane of impact.

Quartz gages were used for the measurements in aluminum, and manganin wire gages

were used in polyethylene. Peak stress amplitudes were about 14 kbar in aluminum;

there was a pronounced decay in amplitude of elastic precursor with propagation

distance. The peak stress in polyethylene was varied from 3 to 11 kbar; non-

steady-state effects were also observed, although no elastic wave was evident.

In the theoretical and computational phase, several mathematical models of stress

relaxation were developed. Computations based on these models have been performed

by Lhe method of characteristics and by the artificial viscosit7 method of von

Neumann and Richtmyer. It has been found that the two-parameter model of stress

rel -';ation predicts the experimental results more closely than does the one-

1 arameter model. During this investigation, it was found that no artificial

Aiscosity is needed when stress-relaxing models are used. Some preliminary

results on the inclusion of thermodynamic behavior have been obtained, and it

is shown that a consistent model can be formulated on the basis of equilibrium

thermodynamics.
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SECTI nN I

INTRODUCTION

One of the current tasks of the Air Force Weapons Laboratory iAFWL)

is to achieve a physical understanding and mathematical description of

shock wave propagation in solids. This is a major undertaking because of

the breadth of interest in materials, pressure ranges, and time sciles.

Stanford Research Institute has attempted for several years to aid the Weap-

ons Laboratory in this task by carrying out research on shock propagation,

equations of state, shock measurement techniques, and structural response. The

work reported here is a continuation of our effort to be responsive to the

needs of AFWL. We are concerned here with the early stages of shock formation

and in particular with the phenomenon of "stress relaxation." This term

refers, in the present context, to a change with time of the shear yield

strength of a shock-compressed material. The time dependence of the shear

strength arises from the combination of the very rapid loading (strain)

rate and the finite time required for the material to flow under the ap-

plied shear stress.

To describe shock wave propagation, the equations of motion must be

supplemented by constitutive relations describing the physical state of

the material, e.g., the stress-strain behavior. The constitutive relations

in general use at present are considered to be independent of the time

scale of the problem. This treatment can be only an approximation, however,

because real solids require a finite time to respond to ani stimulus and

hence will show time-dependent properties on some time scale.

In tnis project all the experiments were performed using plane geom-

etry, and the computational models were set up to describe plane wave

propagation. Let us, therefore, consider the plane case in some detail.

The initial shock front is produced by a very rapid acceleration of a

surface of the specimen (in the x direction, say), as by impact of a pro-

Jectile. If thie initial acceleration is infinite then one may consider

the initial compression (along ABC in Figure 1, for example) of the material

to he elastic.. Because the strain must be uniaxial, i.e., the macroscopic

strain is zero parallel to the shock front, and because the material can



Apport a shear stress, the lateral

stress -Y (=a-) will Le ICZ: th! the

normal stress o ,. However, the in-

C sasai•neous shear stress p.oduced

U 5 Dis greater than the elastic forces

can support and -hear yielding begins

on a microscopic scale-even though 9

macroscopic lateral scrain remains

zero. This yielding, requiring a

s finite time, allows -, to relax from

its instantaneous value at C to an

eauilibrium value at D as the shear

A stress relaxes to its equilibrium
A-5m-32 value. The state D is now reached

FIG. I ILLUSTRATION OF RELAXATION a':ross two waves, the first being

FROM INSTANTANEOUS STRESS an elastic precursor wa%! of fiial

(Point C) TO EQUILIBPIUM STRESS amplitude AB (B is called the
(Psint D) Hugoniot elastic limit), and the

second having amplitude BD. During

ýhe relaxation process, the precursor amplitude will decrease with propaga-

tion distancc, asymptotically approaching AB. The proximity of point D to

the curve of hydrostatic compression (isothermal) depends on the magnitude

of the equilibrium ihear strength. Tf the material can support essent;ally

zero shear stress after reaching equilibrium, point D lies on the hydrostat.

The larger the equilibrium shear strength, the higher point D lies above

the hydrostat. Equilibrium stresses greater than those predictea from

quasi-static tensile tests are frequently observed. This phenomeno;i may

occur because the eq:,ilihrium yield strength depends upon the hydrostatic

stress. On the other hand it may be only an apparent equilibrium value

because the relaxation time is long (many microseconds) compared with the

duration of a shock experiment.

Section II of this report describes exploratory stress-relaxation

experiments in aluminum and polyethylene. This work was done in the

Poulter Laboratories of Stanford Research Institute. Section III is con-

cerned with the d&velopment of mathematical models and techniques to

describe stress relaxation. This work was performed in the Institute's

Mathematics Department. Although the two phases were carried out rela-

tively indepirdently, the experinocatal phase defined the phenomena to be

2



described mathemitically and also provided s ae data to be used in ap-

plying the theory that was developed.

This report builds on previous (nonsystematic) studies in these and

other laboratories; however, the problema investigated are in no sense

completely soived. Much more work will be required before time-dependent

effects in shock propagation are fully understood.
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SECTION II

EXPERIMENTAL WORK

by

G. D. Anderson and W. J. Murri

1. Background

The purpose of the experimental phase of this program was to look

for nonsteady state effects in the early stages of shock propagation and

to provide data as a ,Lvide in the choice of models to be used in the

computational phase. Two materials, one metal and one plastic, which

would be expected to exhibit different types of nonsteady behavior were

chosen for study. The metal was 2024 aluminum. Since the Hugoniot

elastic limit of 2024 aluminum is known to depend upon the hardness,

both very soft and :ery hard samples were studied. The plastic chosen

was a highly crystalline polyethylene.

For both materials the experiments were designed to observe the

shape of an effectively infinite duration plane pressure pulse as a

"function of distance from the impact face. The pvlses were generated by

impact from a thick, flat projectile accelerated by a gas gun. In most

cases the projectile head was of the samne material as the target sample;

a constant particle velocity boundary condition could thus be maintained

at the impact surface plane. Stress-time profiles were recorded by

quartz gages for the aluminum and bi mangenin wire gages for the

polyethylene.

2. Experimentai Technique

a. Aluminum

Previous work on 2024 aluminum (Ref. 1) has demonstrated an elastic

precursor amplitude varying from about I to 6 kbar depending upon the

initial hardness of the material. In this project we investigated

* onsteady-state elastic-plastic behavior in hard and soft aluminum. The

2024 alloy was chosen instead of pure aluminum since a much greater

difference in hardness could be obiained by heat treatment of the alloy.

Sheets of stock 20244351 aluminum ranging in thickness from 0.0195 to

5



0.627 inch were eommercially heat treated.* The greatest hardness was

attained by artificial aging for nine hours at a temperature of 375 0 F.

The softest aluminum was attained by annealing. This process consisted

of heating the material to 750*F at a rate of 50*F/hour, holding for two

hours at 750*F, cooling at .50*F/hour io 450'F, und then air cooling. The

hardness of -he aged aluminum was Rockwell B85 and that of the annealed

aluminum was Rockwell BO.

After heat tleatment the specimens were cut into circular plates for

mounting on target assemblies and gas gun projectile heads- Target and

projectile flatness are essential for achieving simultaneous impact.

Therefore all projectile heads and target plates were lapped; leparture

frnm flatness was held to less than 0.0005 inch across a 2N-inch diaweter.

Quartz gages were chosen to record the stress-time profiles in

aluminum because ef the close impedance match of aluminum and quartz. The

target assembly construction showing the sample, qtartz gage, tilt pins,

and epoxy support is shown schematically in Figure 2. The four tiit pins

are positioned within 0.002 mm of the impact surface and record the

simultaneity of impact. The epoxy support is made of "C-7" epoxy to

which glase beads aave been added to increase its shock impedance to

match that of quartz, thereby minimizing the effect of lateral rare-

factions.

A complete description of the technique of mounting and aligning

the target perpendicular to the axis of the gun barrel has been given by

Linde and Schmidt (Ref. 2). Aluminum projectile head6 of the same

material as the target were bonded onto stock aluminum projectiles with

"910" cement. Care was taken to insure that the plane of the flat face

of the head was perpendicular to the axis of the projectile. The pro-

jectile heads were made sufficientl7 thick so that no reflected wave from

the back surface of the projectile head could reach the quartz gage

during the time the pressure profile was being recorded.

The projectile velocity was maintained at approximately 600 ft/sec,

a speed which produced a plastic wave amplitude of. about 14 kbar. This

choice was made so that the steady-state elastic wave amplitude would be

approximately half that of the plastic wave amplitude in the hardened

This work oas done by the Departmnt of Metallurgical Posearch. Kaiser Aiuminum and Chemical
Corpov-ijow, Spoken.. Washinton.
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aluminum. In this way both waves could be conveniently observed on the

same oscilloscope trace and the linear range of the quartz crystal gage

would not be exceeded.

b. Polyethylene

All the polyethylene samples were cut from the same l'4-inch thick

sheet of "Hi-fax."* Test cores were taken at several positions in the

sheet and examined for uniformity of density and crystallinity. The

density as determined by volume and mass measurements was 0.938 ±0.002gm/cm.

X-ray patterns were taken in three mutually perpendicular directions. The

patterns indicated a degree of crystallinity greater than 90 percent and

very small differences in orientation between directions. For shot con-

struction, polyethylene samples were cut into circular disks ranging in

thickness from 0.031 tc 0.75 inch.

Manganin wire pressure tratsducers (Ref. 3) were chosen to monitor

the stress profiles in the polyethylene. The reasons for this choice

were that (1) the impedance mismatch between quartz and polyethylene

would complicate interpretation of quartz records, and (2) manganin could

be imbedded directly in polyethylene, thereby introducing a minimum per-

turbation on the wave profile. Manganin wire gages aiso occupy much less

area on a specimen for a given length of recording time than do quartz

gages. Because of their small size it was possible to use two wires at

different depths in the target from the impact plane in each shot. This

made it possible to observe the same wave front at two positions.

A shot assembly is shown in Figure 3. The usual target alignnent

procedure (see Ref. 2) relies upon the electrical conductivity of the

target; since polyethylene is nonconductive this procedure was modified.

An additional O-ring groove was cut in the adapter ring so that the target

assembly could be held by vacuum seal to the adapter ring. A lapped

aluminum plate was substituted for the polyethylene assembly and the

adapter ring was aligned according to the procedure outlined in Ref. 2.

The adapter ring was then clamped securely into position to prevent move-

ment during venting of the gun barrel to atmospheric pressure. The flat

aluminum plate was then removed and replaced with the polyethylene target

assembly. Finally, the gun barrel %as evacuated again.

Porrhasd from Cadmilal P4st.ic Co"peuy.
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•TIL PINS

"GPCE LEADS TOPOWER SUPPL.Y
, l AND SCOPES

/TILT PINS (4)

WITH EPOXY FROM
LOCTITE TEFLON
SONOING KIIT

FIG. 3 POLYETHYLENE TARGE- DESIGN SHOWING MANGANIN GAGE CONFIGURATION
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Polyethylene heads were mounted on aluminum projectiles. The poly-

ethylene heads were 0.75 inch thick to prevent reflected waves from the

aluminum backing from overtaking the initial shock during the experiment.

In order to clo-. the tilt pins upon impact it was necessary to cover the

polyethylene projectile head with a thin layer (0.001 inch) of aluminum

foil which was electrically connected .o the projectile body and hence to

ground. Flat surfaces were much more difficult to prepare on polyethylene

projectile heeds than they were on aluminum. Consequently both projectile

tilt and nonflatness of the target contributed to nonsimultaneity of

impact. The contribution to wave tilt due to projectile tilt was reduced

significantly by using 12-inch long projectiles weighing approximately

2400 gi, whereas 3-inch projectiles Weighing about 260 gm were used in the

&luminum studies.

The peak pressures induced into most of the polyethylene targets were

in the 2 to 3 kbar range, although three shots were performed at higher

pressures.

c. Recording Voltage Across Manganin Wire at Low Stress Levels

Thc voltage change across the sensitive portion of the manganin wire
for shock pressures of 2 to 3 kbar is 10 to 20 my. It is necessary to

observe this voltage variation on top of a 2v turn-on step in the sensing

wire. As discussed in Ref. 3, the ratio of the change in resistance of

the wire to the initial resistance of the wire is proportional to the

stress.

A constant current (t.urned on a few vicroseconds prior to shock
arrival) is passed through the wire during an et!.riment and the percent-

age change in voltage drep across the sensitive portion of the wire is

measured. Consequer ly it is necessary to measure either the value of
the current or the initial voltage across the wire (approximately 2v),
and to measure the change in voltage due to the passage of the shock wave

(approximately 10 to 20 my). The pressure as a function of time can be

found from the resulting oscilloscope records.

In practice certain oscilloscopes have their sensitivity adjusted

to observe the entire voltage change across the wire, i.e., the 2v turn-on

plus the 10-20 my pressure signal on top of it; other oscilloscopes
operating at greater sensitivity observe only the !0-20 my pressure
voltage in order to resolve the detail of the wave shaipe. To display the j

S~L



signal due to the small pressure pulse, a negative 2v must be fed into

the oscilloscope to balance the positive 2v from the power supply. The

power supply voltage, however, is not always exactly 2 v (or whatever the

predetermined value is), but may vary by a few percent depending upon

the length of time the power supply capacitors are allowed to charge.

This small variation between the power supply turn-on voltage and the

preset compensating voltage may be sufficient to cause the sweep of the
high-sensitivity oscilloscopes to be off-scale. Therefore a special cir-

cuit was designed to eliminate the need for presetting a coraensating
voltage to offset the power supply voltage.

The circuit is shown schematiLally in Figure 4. Any signal from the

gage, such as the turn-on signal from the power supply, is sent along two

__.__i GAGE

5O;

FIG. 4 TIME-DELAY REFLECTOMETER CIRCUIT

parallel paths. Onone path it goes immediately to the A input of the

amplifier and on to the oscilioscope. Along the other path it is delayed

for 2 Asec and is then fed into the negative B input of the amplifie",

At 2 usec after turn on, the circuit returns the signal reaching the os-

cilloscope to &ero. Thus if the power supply is tvrned on at least 2 pxýc
prior to the pressure signal, the turn-on voltage will be automsticalli

compensated for, regardless of its amplitude. The circuit then provides a
time window of 2 usec duration f9r observing the pressure pulse signal be-

fore it too is cancelled. The delay time may be varied by varying the

length of cable in the delay line.

3. Experimental Results and Conclusions

Ali shots fired during the project are listed by number and objective

in Appendix I. Shota which were of an exploratory or development naturt
are not further discussed in the folloring presentation of data.

II



a. Aluminum

The experimental data for hardened and annealed aluminum are pre-

sented in Tphle I. Shock velocities computed from the time interval

between the firing of the tilt pins, which denotes impact, and the ap-

pearance of a portion of the wave at the quartz gage are generally lower

than the accepted steady-state values for aluminum. The discrepancies

appear greater for the thinner samples. Elastic velocities are deter-

mined from the time interval between projectile impact and arrival of the

first disturbance at the quartz gage. A 0.0001-inch gap between the

quartz gage and the aluminum specimen resulting from a ýeý.ation in spec-

imen flatness could produce a delay in the response of the quartz gage

which would result ir. the observed discrepancies. The major purpose of

the experiments was to observe wave shape. Had wave velocity been of

primary interest different measurement techniques would have been used.

The stress wave amplitudes in the aluminum were taken to be those

recorded by the quartz. No Hugoniot data in the 10 to 20 kbar range for

aluminum of the type used here are available to form a basis for estimating

the quart7-aluminum mismatch. Graphical interpolation of aluminum data

(Ref. 1) between the Hugoniot elastic limit and about 25 kbae indicates no

difference in the impedance of quartz and that of soft aluminum. The

hardened aluminum i slightly higher in impedance; this could result in

the quartz reading as much as 0.5 kbar lower than the true aluminum pres-

sure at the 15 kbar level. Since the effects observed a~e time-dependent,

the stress-particle velocity state in the aluminum does not lie oc the

klugoniot. Therefore, since the impedance mismatch is very sma!l, an at-

tempt to correct the quartz reading using an interpolated graphical

tlugoniot for aluminum when the aluminum state does not lie on that liugoniot

would not significintly enhance the value of the data.

Wave profiles in hardened aluminum as recorded by quartz gages are

shown in Figure S. The sample thicknesses varied from 3.2 to 15.7 mm.

In Fig-ire Sa, the record from a 3.2 - sample, it can be seen that a pre-

cursor whose amplitude was nearly that of the plastic wave was forming.

In Figures 5b and 5 c (records from 7.89 mm and 15.75 rmm samples), the pre-

cursors have separated more from the plastic wave and decreased in ampli-

tude. The Hugoniot elastic limit for 2024-T4 ix about S.4 kbar. The

aluminum studied here is considerably harder than T4. and the quartz record

indicates a precursor anplitude of 7.9 kbar at a depth of IS.!S mm. It is

12



Table I

ALUMINUM SIOT DATA

VELOCITY
SHT PROJ ECT ILE TARGET OF FIRST ELASTIC WAVE .PLASTIC WAVESHOTMOTION

*NUMBER. Tilt' Velocity Type of Thickness A ~ ~ AU~ IFa A P '1 98 F
(Usec) ( !m/aU ec) Aluminum (ma) (m/Asee) (mm/Aeec) (kbar) (kbar) (in/As ec) (kbar) (kbar)

12172 0.032 0.171 Soft 3.22 5.94 - - - 5.39 - 12.6

12168 0.025 0.197 Soft 7.91 5.76 5.34 1.6 2.9 5.0 - 15.5

12170 0.043 0.181 Soft 7.92 6.00 - - - 5.45 - 13.0

12175 0.016 0.205 Soft 7.93 6.23 5.90 2.3 3.8 5.58 - 14.6

i12169 0.060 0.194 Soft 15.86 6.00 5.83 1.4 2.0 -5.0 - 12.5

12807 0.014 0.197 Hard 0.475 - - - - - 14.0c

12808 0.043 0.197 Hard 0.788 - 14.2d

12173 <0.010 0.184 Hard 3.26 5.3 4.27 12.2 12.6 -3.5 - 13.1

112171 0.048 0.180 Hard 7.89 6.02 5.62 10.0 10.7 5.0 - 13.5

112174 0.015 0.202 Hard 15.85 6.29 6.10 7.1 7.9 5.41 14.6 16.1

Tilt across center conductor of quart& gage (l inch).
b See diagram for definition of symbols.

Stress relaxed to 13.0 kbar 0.5 .Asec after impact (0.3 liasc after peak strebs was reached).
Stress subsequently increased be ywa nd 14.0 hbar.

d & resa relaxed to 13.2 kbar 0. t) asec ofter impact (0.35 asec after peak strese was reached).
Streas subsequently increased beyond '4.2 kbar.
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(a) SHI')T 12,173 -3.261mm THICK

(b) SHOT 12.i71-7.899mm THICK

(c) SHOT 12.174-i5.e5rnm T,•h:(T

FIG. 5 QUARTZ GAGE RECORDS
FOR HARDENED 2024 ALUMINUM
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believed that at this depth the elastic wave amplitude had closely ap-

proached the Hugoniot elastic limit.

Wave profiles in soft 2024 aluminum show a different type of behavior.

Quartz gage records are shown in Figure 6. As with the hard aluminum, the

projectile velocity was maintained at about 600 ft/sec, inducing a plastic

, wave amplitude of about 14 kbar into the material. The quartz record in

Figure 6 a is the wave profile emerging from a 3.2 mm sample. A dip in gage

voltage occurred after the initial rise to near-peak plastic wave pressure.

This dip has been observed on several shots (see the elastic wave profile

in Figure 5c). It is not presently being interpreted as a precursor be-

cause its duration and amplitude were always approximately the same (where-

ever it occurred), regardless of specimen thickness and hardness.

This dip at top of the quartz stress profile has also been seen with

quartz on"Plexiglas," so it is not clear at present whether this is due to

the behavior of quartz under certain circumstances or whether it is a

nonsteady-state effect in the materials under consideration. Excluding

the dip at the top of the record in Figure 6a, Lo indication of a double

wave is evident. The quartz record from a 7.94 mm thick specimen is shown

in Figure 6b. Here again the dip in the gage record appears near the top

of the wave profile. However, a precursor is clearly evident near the

bottom of the pressure rise. In Figure 6c, the quartz record shows the

stress profile emerging from a 15.86 mm sample; the peak pressure is not

visible but the precursor is clearly well out in advance of che plastic wave.

Tht wave profiles in the soft aluminum differ from those in the hard

in that, when the precursor is resolvable from the plastic wave, it ha-%

almost achieved its steady-stmte amplitude. The precursor in the hard

aluminum, however, breaks out at an amplitude only slightly less than that

of the plastic wayw. This implies that the relaxation of elastic stress

occui.. at a more rapid rate in soft annealed aluminum than it does in

Lardened &luminum. Relaxati.on of shear stress is achieved by plastic flow.

It is quite reasonable to expect this flow to occur more rapidly in annealed

aluminum, where the dislocations are mor," mobile, than in hardened aluminum

where the dislocations are pinned. The decay of precursor amplitude with

propagation distance is shown in Figure 7.

In a symmetrical impact of a thick projectile into a thick target of

the same material, a relaxation of the plsaL:- wave amplitude might also

be expected. Consider a material, such as aluminum, which behaves

"15



(a) SHOT 12,172-&L23mm THICK

a. sc

( b) SHOT 12,175 -7".94mm THICK

( c) SHOT 12,169•1M86mm THICK

FIG. 6 QUARTZ GAGE RECORDS FOR
FOR ANNEALED 2024 ALUMINUM
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FIG. 7 DECAY OF ELASTIC PRECURSOR AMPLITUDE
WITH PROPAGATION DISTANCE IN 2024 ALUMINUM

elastically up to a certain normal stress oe in uniaxial strain and then

yields by plastic flow. The stress-particle velocity Hugoniot is shown

in Figure 8 by the curve OBC, and the stress c,, above which the material

no longer behaves elastically under steady-state conditions, is called

the Hugoniot elastic limit. If this material is impacted by a projectile

of the same material moving at a velocity W, the stress-particle velocity

state in the projectile when steady state is reached will be on the curve

WB C. Because of the symmetry of the impact the curves OBC and WB'C are

mirror images reflected about particle velocity W/2.

Let us now assume that the impact is perfectly simultaneous (no tkit)

and that the response of a mass element to a step input is initially

elastic followed by a reldaation of the excess shear stress above the

yield stress to the final plastic state. Upon impact the material at the

interface is initially shocked to state A btcause of its elssti4 response.

As relaxatirn of the shear stress occurs the utc'eas decreases and reaches

C when relaxation is complete. The relaxation of the stress at the inter-

face is communicated to the wave fro.it, which during this relaxation time

will have propagated into the material. The "attenuation" of peak initial

stress due to the relaxation results in some interior particle being

shocked elastically to a lower amplitude stress state, such as D. This

1?
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FiG. 8 PLOT OF STRESS vs PARTICLE VELOCITY SHOWING A POSSIBLE
MECHANISM FOR STRESS RELAXATION

particle then relaxes toward C along some path. All particles must ulti-

mately reach state C because of the symmetry of the impact. As yet no

double wave structure has been formed. At some point the stress at ;.he

wave front will have been attenuated to point E. which is just the value

of the steady-state final stress. The mass element which is initially

shocked to E achieves -ts relaxation by accel~rating at constant stress

to point C. As a result of the stress and particle velocity gradients in

the wave, some subsequent particle is shocked elastically to point F and

is then further compressed plastically to state C. It is at states, bclow

K that the double wave structure appears. The particle thst is shocked

through states OF*C experiences a double wave st'ucture. This process of

1I



decay of the elastic precursor continues !"itil point B, the Hugoniot

elastic limit, is reached. Particles at greater depth experience two

steady-state waves in which they are shocked elastically to'B and then

plastically to C.

This is just one suggested model for the process by which the wave

could approach steady state. Other equally plausible models can be con-

sidered, in which the iuitial states lie on curves other than linear

extensions of the elastic portion of the Hugoniot. However, in all

models the boundary condition of constant particle velocity at the inter-
face is required by symmetry of the impact. This means that the inter-
face relaxes from the initial stress to point C along a path of constant

particle velocity. Other particles in the target will accelerate with

decreasing or increasing stress toward point C.

In the experiments no significant decrease in the plastic stress

was observed. The final plastic stresses recorded were consistent with

the stress predicted from existing Hugoniot data and the measured pro-

jectile velocities. An -xtension of the elastic portion of the Hugoniot

for 2024-T4 aluminum indicates that the stress difference AC at the inter-

face amounts to about 3 kbar at the stress level under consideration. The

offset DC at some intirior point in the target would be correspondingly

less. The experiments indicate that the relaxation of the peak plastic

wave stress from A to E has occurred in both hard and soft aluminum in

less than 3.2 mm of travel.

b. Polyethylene

The experimental data for polyethylene are presented in Table II.

Peak stresses in most of the shots were about 3 kbar, but some shots were

fired at about 5 and 11 kbar. The depths of the manganin gages from the

impact plane varied from 0.78 mm to 20.3 mm. No definite elastic precur-

sor wave could be identified in any of the shots. Peak stresses recorded

for any one shot by the two gages at different depths in the target gen-

erally agreed within the limits of experimental error."

Several stress profiles are shown in Figure 9. A common feature in

all the observed profiles was a rapid rise to about 80 percent of the

"Us i .•amha *q•o ore ishorootIy ropirecsibie to with*t 3 porte the "certhisie. is readisq &be
polytbyloee rueord were perreI) #reetes trb that.
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Table II

POLYETHYLENE DATA

PROJECTILE GAGE WAVE VELOCITY DATAb

SHOT Stresab U1I 2
NUMBER Tilts Velocity Depth (kber) U0  U% (Btweeh

(MA~c) (rmr/Asec) N. (on) (mm/Musec) (urn/Macc) gages)

12511 - 0.256 - 19.1 - 2.50 '2.4 -2.38 -

12512 0.015 0.260 1 3.22 1.70 2.40 2.04 2.01
2 6.52 - 2.24 2.16 2.15 2.29

02513 0.005 0.306 1 6.14 3.50 2.56 -

2 12.54 - -2.4 - - -

12514 0.025 0.307 1 3.115 2.66 3.05 1.98 1.95
2 9.51 - 3.00 2.14 2.12 2.23

12515 0.037 0.305 1 3.095 2.65 3.24 2.04 2.01
2 6.332 2.63 3.13 2.05 2.03 2.05

12516 0.013 0.306 1 3.194 2.60 3.10 -2.21 2.60
2 9.634 2.34 3.02 -2.33 -

12517 0.008 0.282c 1 4.57 4.29 5.47 2.25 2.22
2 10.89 4.20 5.41 2.53 2.52 2.79

12804 0.022 0.298 1 1.20 2.40 -ý3.00 3.74 3.50
2 20.15 2.95 4.20 2..4 - 2.98

12805 0.022 0.749 1 1.05 - - - -

2 20.30 - 11.0 2.98 2.96

12806 0.011 0.722 1 0.787 5.0 9.9 2.77 2.58
2 18.15 5.7 9.8 2.82 2.81 2.82

a cross 6 a, the active length of the gage.
6 See diagram for definition of symbols.

C Aluminum headed projectile

T2T
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0.1 0.1/oc

3.095mm THICK 6.332mm THICK
(a) SHOT 12,515

4.59mm THICK 10.89mm THICK
(b) SHOT 12,517

0.2psw cW

0.787mm THICK 18.15mm THICK

(c) SHOT 12,806

FIG. 9 MANGANIN GAGE RECORDS FOR POLYETHYLENE
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final stress, followed by a much slower rise to peak stress. In Shot 12.806

(see Figure 9 c) one gage was at a depth of 0.78 mm from impact and the

other was at a deith of 13.1 mm. Both gages recorded the same peak stress

but the deeper gage recorded a much more rounded (slower rising) pulse.

The apparent double wave structure in this record is not being interpreted

as an elastic plastic effect. The separation in time of the "two waves"

is 0.07 •sec at 0.78 mm from impact, and only 0.11 sec at 18.1 mm from

"impact. The double wave appearance was formed quite rapidly and main-

tained that appearance, with both waves moving at nearly the same velocity

over a distance of 17.3 m. The rounding off of the top of the wave front

profile with propagation distance has also been observed in Plexiglas

(Ref. 4).

The wave profiles indicate a nonsteady-atate behavior, and the average

shock velocities from impact to the first gage are lower in every case but

one then the average shock velocity between gages. Under nonsteady-state

conditions it is not strictly valid to apply the Rankine-Hugoniot jump

conditions and calculate Hugoniot points. However, assuming that the wave

has nearly reached at-dJy state and that the average velocity to the final

gage is quite.near the instantaneous velocity, some Hugoniot points have

been calculated. These data are plotted in Figure 10. Two points of

Wagner, Waldorf, and Louie (Ref. 3) are included for comparison.

In a parallel program carried on simultaneously with the present work

(Contract AF 29(601)-7214], similar experiments have been performed on

"Teflon." A decay in peek stress of from 5 percent to 10 percent between

gages was observed (gage separation about 6 mm), as well as a definite

rounding of the wave front as it propagated. The wave profiles at a par-

ticular gage location were '-Iatively flat-topped; thus tie reduction of

peak pressure and change of wave shape are not due to normal attenuatiou

but are nonsteady-state effects.

It is of particular interest to compare shock velocities with mia-

sured sound velocities in polymers because of the dependence of sound

velocity on frequency in certain frequency ranges, and because of the lack
of evidence of an elastic precursor in any polymer yet studied. Tht data
for polyethylene suggest that the velocity increased somewhat as the wave

propagated into the specimen. This effect could result from a systematic

e~ror in measuring the impact time. although the effect was large in

Shot No. 12,S17 and a large timing error would be necessary to account for

it. The most reliable transit times (and hence velocities) %re those
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measured between like events-in this case, between two gage records.

The corresponding shock velocity at the lowest pressure of this study

(-3 kbar) is 2:2 t 0.1 mm/4sec (three shots). This is to be compared

with a measured (at 1 Mc/sec) longitudinal sound speed of 2.26 mm/,sec.

This situation is in contrast to that for Plexiglas, in which the lowest

measurements of shock velocity (-3 kbar) still exceeded measured values

of the longitudinal sound velocity.

X-ray patterns were taken of some samples of polyethylene before and

after impact. The pattern? prior to impact indicate a high degree of

crystdllinity (about 90 percent) with random orientation of crystallites.

Patterns taken after impact show that some of the crystallinity was lost,

but there was a net orientation of the remaining crystallites such that

the polymer chains tend to lie in a plane parallel to the shock front.

It should be emphasized that these were not controlled recovery experi-

ments. The specimens were subjected to gross deformations which can be

avoided by proper target design.

4. Summary and Suggestions For Further Work on Struss Relaxation

The experimental effort has been directed toward the observation of

stress relaxation phenomena in soft and hard 2024 aluminum and in highly

crystalline polyethylene. A nonsteady-state elastic precursor which de-

creased in amplitude with propagation pati, length was clearly detected in

hardened aluminum. Nonsteady-state effects were also detected in the soft

aluminum and polyethylene but were n3t as dramatically evident as in the

hardened aluminum. A low-amplitude elastic wave which did not vary by a

large amount was observed in the soft aluminum. No elastic precursor was

seen in the polyethylene; however, the wave shape was observed to vary as

the wave propagated, indicating a nonsteady state.

The present work represents only a beginning in the much needed study

of nonsteady-state propagation of low-amplitude stress waves and the mech-

anisms of failure of sDlids under rapidly applied loads. An extension af

this work could profltably be directed Loward studies on metals or poly-

mers. "Stress relaxation" in the context of this project is manifested by

the decay in amplitude of the ePastic precursor in an elastoplastic solid

as the wave propegates during ,he early states of shock formatinn, i.e..

very soon after impact. This decay in amplitude is associated with the

finite time required for the plastic yielding to occur. The ultimate

steady-state amplitude of the elastic wave is related to the static yield
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point of the material. Inasmuch as no elastic precursor has been observed

in polyethylene (or several other polymers), it is suggested that the defi-

nition of the term "stress relaxation" be broadened to include the general

process by which the wave approaches its steady-statp n-rile.

.. a. Suggestions for Work on 1tals

The present study has established the existence of stress relaxation

in 2024 aluminum. The decay in amplitude of the elastic precursor with

propagation distance appears greatest in hardened 2024 aluminum. Nonsteaiy-

state behavior is visible up to a depth of at least 0.5 inch from the plane

of impact. It is now clear that nonsteady-stat2 effects are quite impor-

tant, perhaps equally as important as nonhydrodynamic effects, and further

investigation of these effects Is required for a complete understanding of

wave propagation in solids.

The present work has been devoted to observing the shape of the pres-

sure pulse rise as a function of propagation distance. The duration of the

pulses has been essentially infinite because very thick projectile heads

have been used. Projectile heads have been made of the same material as

the target to maintain a constant particle vekocity boundary condition at

the impact plane. Experiments using thin-headed projectiles should also be

performed, as the long-range goal of this work is to gain a complete under-

standing o! shock propagation. Such understanding must include the

nonsteady-state behavior of the rise of the wave, the flow behind the wave,

and particularly the manner in which rarefactions overtake the shock and

produce attenuation. At the present time there is every reason to believe

stress relaxation shotId affect all parts of the flow. Or.e -erý important

question to answer is whether stress relaxation affects thT late stages of

shock propagaticn, t.e.. wave shape after a propagation distance of many

initial pulse thicknesses. Also, what effect does stress relaxation have

on spall thresholds and other damage criteria7

The work suggested below is aimed at continuing the efforts of the

past year toward answering these questions.

(1) Aluminum. Having established stress relaxation in aluminum

using very long pulses, the work must now be extended to pulses of short

duration. Shock profiles should be observed after propagating several

pulse widths and results should be compnred to pred.ction of attenuation

models. The effect of initial temperature on stress rplaxation effects is
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unknown. Experiments similar to those performed during the past year

should be performed on hardened aluminum at initisl temperatares from

200'C up toward aielting ('-660 0C).

(2) Other Metals. Very little elastoplastic data or stress

relaxation data exist for metals other than aluminum and iron. Two

metals of particular interest to which the present work should be ex-

tended are tungsten and titanium. Quartz or manganin wire gages, as

appropriate, should be used to observe wave shape for various thicknesses.

(The manganin wire pressure gage is particularly well suited for stress

propagation studies in polymers. It has already been used quite success-

fully in Teflon and poAyethylene.) Initial conditions such as hardness

and method of fabrication should also be varied as in the case of hard

and soft aluminum. After investigating the behavior of long duration

pulses, studies should be made of attenuation with emphasis on late stage

behavior and spall prediction criteria.

Extension of the present work should first be concentrated on

further studies of polyethylene. Such work should include the fcllowing:
I

(a) Experiments using manganin wire gages, as in the
present work, should be performed at higher I
stress levels to determine the dependence upon
stress of the nonsteady-state behavior which is
observed at low stresses. These experiments
should be performed on both the existing samples
(for comparison with existing data) and on newly
constructed samples with different microscopic
structure (and hence different mechanical
properties).

(h) The effect of wave rise time upon shock struc.-
ture should be investigated. Foam attenuators
could be used to alter the shape of the input
wave. Manganin wire gages could then be used.
as in the past, to iook at the wave shape in the
polyethylene sample resulting from different in-
put wave shapes.

(c) The effe'-t of initivl temperature upon wave
propagation is very important from both the
applied and purely scientific viewpoints. Again,
because of their temperature insensitivity,
manganin gages are very well suited for the study
,f wave shapes in polyethylene at elevated
temperatures.
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(d) The mechanical properties of the polyethylene
used in the present work appear to be affected
by shocking. The material is more brittle
after shocking than it was initially and X-ray
patterns indicate some orientation of the
crystallites which was not initially present.
It is not clear at present whether the observed
changes are due to the shock or to the subse-
quent relief by lateral rarefactions. To de-
termine the effect of shock on the crystal
structure, specially designed recovery experi-
ments should be performed in which the strain
in the shmple is maintained one-dimensional as
nearly as possible.

In addition, exploratory work on other plastics should be

carried out to investigate the possibility of nonsteady-state effects.

Carbon phenolic would I.e a logical candidate.
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SECTION III

THEORETICAL PHASE
by

S. V. Hanagud and R. C. Alverson

1. Background

Research on shock propagation in solids has been the principal

source of information leading to an understanding of the dynamic behavior

and constitutive relations of these solids when subjected to very large

stress and very large stress rates. In the case of metals in certain

stress ranges, the wave form consists of an elastic precursor followed

Ly a plastic shock wave which carries the material to its final stress.

Some recent experimental work, (Refs. 6-9) as well a3 the experimental

work on hard and soft aluminum done in the present research program,

shows that the amplitude of the elastic wave is considerably higher than

that r. edicted from elastic-plastic theories based on static measurements.

This phenomenon can be observed if the measurements are made within the

first few microseconds of the formation of the two-wave structure. As

the wave propagates into the solid, the amplitude of the elastic shock

wave decreases and asymptotically approaches the amplitude predicted

from the usual elastic-plastic theory. The mechanism for such processes

of stress relaxation (Ref. 10) depends on the particular material. The

general mathematical description of wave propagation is most conveniently

given in terms of Eulerian coordinates. In this coordinate system the

field quantities such as displacement, velocity, density, or stresses

are expressed as functions of the instantaneous position of a material

particle and of the time. Using this coordinate system and making the

assumption of uniaxial strain, to coincide with experimental work, the

governing set of equations is:

(Ay

pv -- = 0 (conservation of momentum) (1)

-- (/H) * -- =0 (conservation of mass) (2)
p 2
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S1 ( 3 )
= PQ Pz.v (energy balance)

and

f(a , ... , E , , ... , e) = 0 (constitutive relations) (4))

The symbols used in these equations are explained as follows:

t = time

x = Eulerian coordinate

( -= material derivative given by + v ;X

p(z,t) = density

v(x,t) particle velocity

u(x,t) - normal stress in x direction (positive in tension)

e = internal energy per unit mass

Q h heat per unit mass added by conduction, radiative
absorption, etc.

= strain in x-direction

f - functions defining the constitutive relation,
including thermodynamic variables.

The formulation of appropriate functions f based on the principles

of continuum mechanics and the physical mechanism of the material is the

first task. Later the solution of the set of partial differen~ial equa-

tions with appropriate initial and boundary conditions can be used to

correlate and interpret the experimental data.

In some materials, such as polyethylene, the effect of thermodynamics

and viscous stresses may be more important than the stress rate effects.

Then the functions f must be defined to take these into account.
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2. Constitutive Relations for Stress Relaxation

The constitutive relations for stress-relaxing materials are dis-

cussed here under the assumption of uniaxial strain. Under this assump-

tion all dependent variables are functiona of one Eulerian coordinate,

x, and the time. Since there is only one nonzero velocity component,

the strain rates are given by

= V (5 )
a3x

and

-- E = E = = E = 0-y i = 'Xy ýyl aX*

The only nonvanishing components of the stress ten3or are a. , 7

and 0=, and because of symmetry under uniaxial strain we have o = 0r.

Decomposition of the stress tensors into a hydrostatic pressure p and

stress deviator D,s gives

p = -- (a, 2c,) (6)

D11 ' DA 2 x a3 3

2

1
D22 ' D Z I(~r*

3D 3 -- (-a. a")3 ' 3 5 1

D 12 *D - D'23 D 12 DI1 - D31  0 (7)

The formulation of the constitutive relation consists of determining
the relation between p, D, and the kinematic variables. It will be

assumed that the hydrostatic pressure p is a function of density

alone, i.e.,

p ' 1(p) (8)

31



The function f(p) depends on the particular material. Two suitable forms

of f(p) are

p = alI - + ÷a2•--L + ..

p - p,) 2 +

p z b, I- - + b 2 ( 1 - )- +P

When the function f(p) is specified the remaining task is to specify

the relationship between the stress deviator and the kinematic variables.

a. Elastic-Plastic Model

The very commonly used relation between the stress deviator and the

kinematic variables is the familiar elastic-plastic relation. This can

be described as follows. In the case of uniaxial strain there is only

one iriependent component of the stress deviator because

2

= -2DYY -2D, 2 (a - oY) (9)
37

In a similar waý the components of the strain deviator E, are

2

33

E 7 3 (')

1
E • -- (e ) (10)

The strain-rate deviatora are
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2 2 3v
ZZ 3 Z 3 3x

1. 1 3v
E --- -

YY 3 3 3z

E - E - - (1I1I)
3 3 3x

If the solid is defo.Fming elastically, i.e., if

IDxI < y, y > 0 (12)

then

Di, = 2GE.. (13)

In Eqs. (12) and (13), y is the deviatoric yield stress" and G is the

modulus of rigidity. Furthermore, Tresca type of yielding has been

assumed. The solid is said to be deforming plastically in regions where

1D..1 y (14)

Once ID,1  has attained the yielding value of y, ID,,l cannot increase

beyond this value. However, the strain deviator can continue to increase.

b. Elastic-Plastic Relaxing Model

The elastic-plastic model cannot account for certain experimental

observations in shock wave propagation. Measurements made within the

first few microseconds have shown that the two-wave structure predicted

by the elastic-plastic model is not formed instantaneously but is only

realized after some time by a process of relaxation. During the relax-

stion process, the amplitude of the elastic wave (or elastic precursor)

is considerably higher than that predicted from the elastic-plastic

model. As the wave propagates into the solid the amplitude of the wave

decreases and asymptoticoll) approaches a value correspondii~g to the

static yield stress.

* 2/3V where r is the yield ucroes to simple teasieum
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(1) Macroscopic Belaxation Equations

The elastic-plastic stress-strain relationships outlined above

are macroscopic. They can be generalized to include stress relaxation.

A simple model can be constructed by considering the rate type of the

constitutive relation in the form

A
D - F(D,E,p) (15)

where E is the rate of deformation tensor. The symbol A represents the

Janmann or co-rotational type of -tress rate (Ref. 11). In the case of

t|niaxial strain these stress rates reduce to the usual time derivatives

along particle paths.

A specific relaxing type of stress-strain relationship as applied

to the case of uniaxial strain can be written as

D -e D,DXX - 1D1 16)

"2GT 2G

if

ID,, I> y (17)

otherwise

i 2 (18)

In these #equations 6 can take the value of 1 1. This accounts for the

fact that yielding can take place when the absolute value of the deviator

reaches y. T can be called the relaxation constant and has the dimension

of time.

The first term on the righthand side of Eq. (16) takes care of

the fact that the components of the stress deviator can have values

greater than the static deviatoric yield stress. This then can result in

the amplitude of the elastic precursor wave being much larger then the

equilibrium value. The form of the term suggests that the deviator

relaxes with time towards the static yield value. The second term on the

righthand side of Eq. (16) takes care of the elastic deformation. This

equation can be written as

34
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p

=T + 2GE• - (19)"" T T

with the condition that

b = 2GE.. (20)

when

y (21)

Altern-tively it 7 can be stated that when E5 , 0 and D,. = Oy; then

b = 0 (22)

If Eq. (19) is expressed as

* F(D ,Ex,.p) (23)

we have

F(OyO;p) * 0

In a similar way

Db F(DYYE.Y,P) (24)

b., F(D , SI 1',p) (25)

However, these equations will be identical to Eq. (19) in case of uniaxial

strain; y may be a function of some invariant& of the stress tensor in the

general tensor.al constitutive equation.

Further generalizations can be made by considering general forms

of functions F in Eq. (19). However, these generalizations should be

based on the physical mechanisms and experimental observations.

In the case of hard and soft aluminum, experimental observation

indicates that a twa-wave structure is formed a very short time after

impact. However, the amplitude of the elastic precursor is initially very
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large compared with the value predicted by the elastic-plastic model.

The elastic wave amplitude decreases within a few microseconds to the

steady-state amplitude of the elastic precursor as predicted by the

elastic-plastic theory. This behavior indicates that the yield stress

is very large at early times, relaxing to the dtatic value in a few

microseconds. (This can be called the yield relaxation time.) It also

indicates that the relaxation of the elastic precursor towards the equi-

librium value is taking place much faster than the yield relaxation time

and thus is setting up the two-wave structure at a very early time. A

model to explain this behavior can be obtained by adding to Eq. (16) an

additional equatior.,

Y - Yo

T Y > Yo (26)

In this case y is no longer a coi.stint but

y = y((C" ,.0 )

and decreases with time towards the static-yield value

Y = Y0

Another way of generalizing the relaxation equation is as

follows. Equation (16) and Eq. (8) can be simplif'ed by substituting in

them the expre~sions fol p and D.. in teri1s of G , and eliminating Lr7

between the two equations. Then we have

SF(p) -F'(P. (27)

where

F 4G df

3p dp

mnd
lPP) cr 9Y0

F'(fu) LL -- -

T T T

i 3
i



Alternatively one can think of Eq. (27) as a one-dimensional relaxation

equation with

do,

F(p) . c2
dp

the quantity c 2 is .he square'of the sound speed and F'(p, a ) is the dis-

sipation function. Then in any one-dimensional problem a function

0a. -F(p) and F'(p, o) should be specified. a- = -F(p) will be the

elastic ax, P relationship. This can be found from many steady-state

experimental results. A function for F'(p,cr) based on Zener's model is

P. - P,
F' (p, - ) = T = -.

T *

where p, is the amplitude of elastic precursor when complete relaxation

has taken place. This would be the amplitude of the elastic precursor

on the basis of elastic-plastic models. Another form for F'(p,. ) can

be

p. p,(a,,p)Fi(p,a) =

and

p1 - P

, = -(28') T2

where T2 is the relaxation constant for the yield stress.

The value of p, on any particle is of significance from the
time the particle comes under the influence of the leading elastic shock
wave. If this time ib specified as t and the pressure at this instance

is p., then

, f(p,)

This equation specifies the iuitial condition for Eq. (28). A similar

reasoning can be used to specify the initial condition for Eq. (26).

Calculation of wave profile with these equations will be discussed later.
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(2) Mic.rLscopic Relaxation Equations (Dislocation Mechanism)

Shear yielding and resultant plastic flow in metals are due to

the motion of dislocations. A sufficient number of mobile dislocations

is necessary to cause yielding. In dynamic problems a finite time .s

necessary for dislocation production and movement and hence for production

of plastic flow. This finite time is then, the cause of the large initial

amplitudes of elastic precursor waves.

It is known that a sufficiently strong external stress can

cause a dislocation to unpin itself and hence become mobile. Dislocations

can also be created by the Frank-Read mechanism, a kind of multiplication

or breeding process, and again the effective agency is stress. Once

unpinned, a dislocation is free to move and contribute to yielding or

plastic strain, urntil it again becomes trapped at another grain boundary

or impurity. The total number of moving dislocations effectively con-

tributing to the plastic strain rate &t any moment is the net result of

competition between the processes of unpinning or creation (sources) and

of trapping (sinks).

It is natural to suppose that unpinning is an excitation

process with a rate depending on the excess of shear stress over yield

stress, while the Frank-Read mechanism produces new dislocations frow

existing ones at a rate that is proportional to the number of existing

ones and that also depends on the excess shear stress. To simplify the

analysis we approximate the excitation process by toking the ratp simply

proportional to the excess shear stress. The rate of Lrapping is of

course proportional to the number of dislocations present. These rela-

tionships can be put in mathematical form in the following way. Suppose

that at some particuLar time the mobile dislocation density is N. and the

total dislocation Aensity is N,; hence, the density of pinned dislocations

is (N, - N.). Assume that the pinned dislocations become Frank-Read

sources, so that a terr gZ(N, - N.) contributes to dN.;di. The constant

g, represents the strength of the Frank-Read source and Z is defined to

be (T - Y/2ý, the excess shear stress above the yield point." The pinned

dislocations may also become mobile by various freeing mechanisms and

this contributes another term, g2 Z(N, - N.), to the rate dN3 !dt. We

assume further that mobile dislocations can become pinned by interaction
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with impurities, etc., thus tontributing a rate term of the fo,m

- T)N(v/v), where v is the dislocation velocity and v its maximum

value. Mobile dislocations can also simply disappear irreversibly by

migration to free surfaces and voids, giving a similar term -(l/T 2)N.(v/v.).

These assumptions result in the following expressions for the rate of

change of the mobile and total dislocation densities:

d--" • ygZ(N, -N -N.,i

dN
dt " gZE (N, - S.) - " (29)

Here g ( 3 / 4 )(g + g92), and E 9 g1 /(g 1 * g2 ). It can be seen from the

definit-in that E is a number between xero and unity. When e is close to

zero, a pinned dislocation is more likely to becomc freed than to create

a new dislocation. A value of E close to unity means that a pinned dis-

location will probably create a new one rather tha" beco,,.e freed. If the

stress history at some point in the solid is known, Eq. (29) can be

integrated to give the total and mobile dislocation densities at this

point.

In order to get some idea of the choice of parameters in this

model, we consider the application of a constant stress. The ratio

(rt-vfi) will then be constant, since the dislocation velocity is assumed

to be a function of the r-ress alone. Eliminating N, from Eq. (29) gives

d 2N

- gZ
L

4

T 0• 9z (, T) TL - •,.

Ve want the mobile dislocation density to ircrease with the appLcation

of stress. To eisure this, the equation above must have a golution

which increases with time. This requires that

3,



(1 - E) o .0 E0

T2 T 1

This condition will be satisfied if we choose e close to unity and

T 2 > T1 .

fhe dislocation velocity is assumed to derend on the applied

shear stress. Following Gilman and Johnston-(Ref. 12).

V = V e : tp [ -
'T

where

1
T = shear stress = (c- - o-

y2-y shear stress at whicS plastic flow St3rts

Va = maximum dislocation velocity

B = a constant.

Now the shear strain ra is given by

S= bvN

where b is the Burger's vector. The remaining task is to interpret

in terms of E.

Under the conditions of unixial strain

Y 0y z

Furthermore, the total strain can be split iito elastic and

plastic strains. Then

40



E e+ EP

I z -- x• + •

= •e4E p

y y Y

E = +.e, p

Because of symmetry

Ee E e
y z

EP = EP
y z

Furthermore

ECe + p 0
Y Y

If it is assumed that the plastic strain does not contribute

to any volume change

EP + 2 =P = 0
X y

Then

EP
x

Y 2

Under uniaxial strain the maximum shear strain is oriented at 45' to the

x axis and the maximum plastic shear strain rate is given by

= (ý l. P)
2 y

Then

3.
4 x

The relaxation function is

8F 2GEP --Gb N (30)
z 3

where b is the Burger's vector and N. must be calculated from Eq. (29).
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c. Thermodynamic Considerations

The results of many wave calculations are in disagreement with

experiment. There are many reasons for these discrepancies, one of

which is undoubtedly the fact that the calculations nre based on consti-

tt .ive relations which are indepencient of tit..e; i.e., stress relaxation

and viscous effects are neglected. However, in some materials the mac-

roscopic properties may be highly temperature-dependent, and theoretical

predictions should therefore be based on thermodynamic as well as purely

mechanical considerations. Most theories of wave propag3tion in solids

are based on a governing set of differential equations which is indepen-

dent of energy considerations. It is the purpose in this section to

show how a theory which includes thermodynamic considerations may be

constructed for a stress-relaxing solid. We consider the perfectly

elastic, perfectly plastic, and the plastic stress-relaxing solids, in

that order.

If we let T, S, and E denote the temperature, entropy, and internal

energy per unit mass, respectively, we have from the first and second

laws of thermodynamics

TdS - dE - o•.d

where o,, are the stre4s components and Et, are the strain components

and we assume the summation convention over the repeated subscripts:

a> f. • 0 6E + 0, f + etc. The relation above can be rewritten

in the form

(1E\
-I Y -Tr

,J ) T t

:he constitutive relations considered in the present work for

purely elastic behavior in the case of uniaxial strain are

a + 2a
= -f(p)

3
and

ax - aN y'
=

2G
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These equations can be solved for o and ay, in turn and the results

can be substituted into the thetmodynamic relation ebove. It is thus

readily seen that if •z and a are indepndent of T, that is, if G and

f(p) are independent of temperature, then

z y
dT - T

and

_6E

tj t
.1)

This equation can be integrated directly to give the internal energy,

once the strains are given. Thus the purely elastic model which is

mechani'Ally consistent does not violate either the first or the second

law of thermodynamics. If, in the constitutive relations given above,

either or both G and f depend upon the temperature, we then append to

this system of equations the equation which expresses conservation of

energy:

dQ dE 1° P ,j iEi

In this equation Q is the heat flux or heat input. This equation,

together with the constitutive relat;os and the equations governing

ccnservation of mass and momentum and the first and second laws of

thermodynamics then give a consistent set of equations with which theo-

retical studies of wave propagation in a perfectly elastic heat-conducting

medium can be made.

We now consider the perfectly plastic solid for simplicity, and use

the von Mises yield criterion

E.i w AD j, D. D1, r 2k 2

where c,.) is the strain rate and D is the stress devictor. 3 y simple

manipulation of the above we have

k
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We also assume here for simplicity that the material is incompressible.

The equation of heat conduction or conservation of energy then becomes

dQ dE

dt dt LY 1j

Again, if the yield stress is independent of temperature the mechan-

ical problem is separate from the thermal problem and the latter may be

solved after the mechanical problem has been solved.

The case of a stress rela.ing elastic-plastic medium is much more

complex but a combination of the procedures given in the two cases above

applies. The system of equations which is both thermodynamically and

mechanically consistent is given by the conservation laws 'mass, momentum,

and energy), the constitutive relations, and the combined expressions for

the first and second laws of thermodynamics. If the material properties

are independent of the temperature the problems are separate, but if f(p)

and/or the relaxation constants depend on the temperature, then the heat

conduction problem must be solved simultaneously with the mechanical

problem.

These considerations have been based on the ideas of equilibrium

thermodynamics, and to date no computations have been attempted using the

theory discussed above. For simple cases such computations are entirely

feasible if sufficient data on the temperature dependence of the consti-

tutive relations are known. Further extension of this work to nonequi-

librium thermodynamics depends on formulating a definition of eatropy

which is consistent with the equilibrium case. The thermodynamic con-

siderations are likely to be important in some materials, since high

temperatures may be obtained at impact surfaces and the resulting tem-

perature distribution may then alter the wave shape and may be a source

of high energy dissipation.
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3. Method of Computation

a. Characteristics of the Lifferential Equations

The equations governing the wave propagation under uniaxial strain

can be written in the following way.

Equation expressing conservation of mass:

ax= 0 (31)

Newton's law:

Ix P I + V 0 (32)

In these equations x is the Eulerian coordinate, ., is the stress in the

x-direction, v is the particle velocity in the x-direction, anJ . is the

density. Equations (31) --nd (32), together with the appropriate consti-

tutive relationships, complete the governing equations.

Constitutive relations:

( + 2a_ ) = -f(P) (33)

D D - Oy
- + _ _ _ = Ex . (34)

2G 2GT XX

In these equations the dots represent the derivativ-" along the particle

paths. Furthermore, Eq. (34) assumes the simple one-parameter macroscopic

model for the stress relaxation. 1his equation will be simplified and put

in a form such that it can be generalized to include other mudels.

By using the following relationship

2

3

Equation (34, becomes

j - 1 -j - ( 5
____._ (35)"

2G 2GT X
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where
- 3

Y - Y (36)

By definition

Cz
7X

Then from Eq. (31)

p +. . 1 • (37)

Equation (35) now becomes

1 py 2
&" -&, -- (o+ - -) = -- . (38)9 Y T p Y p

This equation and Eq. (33) can be used to eliminate o,,. Then the follow-

ing equation is obtained;

;3 31)G (P . O (39)
T f

or

c' - -F'(p, a,) (40)

where

c 2 _ df F(p) (41)3 p dp

F° f(p) a"x 2

F # - + • (42)T T 3

Equation (40) is in a form in which most of the constitutive relationships

involving stress relaxation and only the first-time derivative of stress

can be written. Equatior, (40) can also.be written, as

do, -F(p)dp - F'(p~a.)dt (43)

Then

dp F'(pa.) da 1a (44)
dt f(p) dt F(p)

46



The equation expressing the conservation of mass can now be rewritten as

do,-- F'(p,a,.) - pF(p) (45)

dt C X

By introducing the notation

P., -a. (46)

equation (45) becomes

dp. 6
- + F'(po-) - pF(p)- (47)at 7

The use of the definition of the derivative along the particle path yields

'aP . BP . -av,(
I- V a PC 2 -~ z F'(p,p.) .(48)

The eque ion ol motion [E(%. (32)] can also be written as

6 P 1 P 0 (49)
UX axrP~ t I

By adding Eqs. (48) and (49) we have

(v + c) -- P +c V (v c) F1 (50)-at '3X t"

Similarly, by subtracting Eq. (49) from Eq. (48)

BP, dp1
-. ~(V - C) dx L 'Ct (V - C) J (51)

The form of Eqs. (50) and (51) suggests that they can be written as

d- F(pp,) (52)

\dvta
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and

- PC -- F' (r,p,) (53)

where

d+ and
a /

represent the total derivatives along the paths a and 83 defi ed by

dx
:- v + c (54)
dt

and

dx

dt

The paths Ot and 8 define the chara eristics (Ref. 13) of the set of

#.quations governing the probler ar Eqs. (52) and (53', are the two com-

patibility relations valid along ach of these charact- ris Lcs. Thesý

equatior. can be used to set up a sc eme of numerical iegration oi t.1

initial-boundary value problem.

These equations are valid only if ID ,I > I. I D D, , < y, the

material is in the elastic regime. Equations (54) and (55) for the .:har-

acteristics are still valid; however, the compatibility relations are

P 0o

and

( /

An alternate way of deriving the equations of characteristic.s

and the compatibility relations based on the 'xistence proof uf Cauch-

Ko~alewski is explained in Appendix i1.
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b. Numerical Method

The mesh points are taken to be fixed. The fixed interval Ax is

along the x-axis, and 6t along the time axis. The ratio Ax/At is deter-

mined from a knowledge of the maximum values of particle velocity and

the sound speed c. The set of fixed mesh points is shown in Figure 11.

The curve labeled I represents the interior boundary and the curve

labeled II represents the leading shock wave venetrating into the undis-

turbed medium.

t~I,

i &t
_TYPICAL
INTERIOR

PON

0
I* X. +ANX X+ n&X X

SA-6783-6

FIG. 11 FINITE DIFFERENCE MESH FOR THE METHOD OF CHARACTERISTICS

The numerical determination of the field quantitie's at a mesh point

x = x0 +nAx, t = jAt differs ac-ording to whether the point is on either

Curve I or II or on an interior point, in Figure 11.

(1) Numerical Determination at'a General Interior Point

In Figure 12, it is assumed that the point labeled x lies

somewhere on a horizontal line t = tl, and that the points xj, x2', and x3

are on a horizontal line t =t 1 - At; the x coordinates of x 2 and x3

are x- Ax and x1 + Ax, respectively.

It is also assumed that the values of p,, p, and v are known at

points x P x2, and x 3. x 2 must lie either on or to the right of Curve I
of' Figure 11 and x 3 must lie either on or to the left of Curve II. The

values of the field quantities at x are to be determined.
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The first step is to ap-

IL proximate the charactexisLic "urves

through x by straight lines an• find

their intersections with the hori-

zontal line t - tl - At. To this end

we approximate the curve with slope

ea * a', 0 01*st 013 dx/dt - v* by the straight line
IGA S-YSIM through x w•ith slope

FIG. 12 TYPICAL MESH POINT FOR
A GENERAL INTERIOR POINT dx V(xl) + V(x 2 )

d- -2 (56)

This curve represents the particle path along which Eq. (40) is valid.

The intersection of this line with t - ti - At is then denotedI I
by z' in Figure 12. The x coordinate of x; is then readily computed

through the formula

0v(xl) + v(x 2 )]
x1 - 2 At X (57)

From Eq. (57) we note that x', may be greater than, equal to,

or less than x,, according to whether

V(Xl) + V(X.) >

2 <

If X, we define

* • x~S2
S Ax

and

K• - (59)

if

The curve do d 0 To elrestate the ckart'terlatic Cul're *left# Watb the coesstatatie rMlethose arevalid (see Apcadia*a I ead 111,.
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The values of p., p, and v at xI are then found by interpolation

through the formula

F(x',) F(A) + X1 [F(B) - F(A)] (60)

where F is successively equal to PX, P' or v, and A is x1 , B is X 2 if )1 is

given by Eq. (58), and 4 is x, and /% is x 3 if X1 is given by Eq. (59).

.In a similar manner points x2 and x; of Figure 11 are found as

the intersections of the straight lines which approximate the curves

dx

dt

with

Thus

[(v + c)(x 1) + (v + c)(x2)]
X - At + x, (61)x2 2

-and

[(v- c)(xi) + 'v - c)(x3)]

X'3  2 At + X1  (62)

In the equation above, (v + c)(x ), etc. denote the value of

(v + c) at point x1 . It is to be noted that x' lies between x 2 and x1,

and x 3 lies between x, and x 3 because of the way in which the ratio Ax/At

was taken. We then define

x2 - x2

2 Ax (63)

and
X3 - X

3 AX (64)

and the vaiues of p., p, P-.0 , dt x2 and x' are then given by Eq. (60)-

F(x') = F(A) - X[IF(B) - F(A)]

where xj is successively x; and x,, etc.
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'rhe finite difference equations which must be solved to give the

values of p,, ,), and v at x can be written in the following way.

pý(x) -, p'(x2) I(x')c(x2)[v(x) v(x2)] F'(x2)At (65)

p (x)- p.(x3) (x '3 )c(x )[V(Z) - V(x 3 )] X F '(x3)At (66)

In these equations

F'(x2) F'F[p(x2),p,(x2)]

F'(x)' F' x' ) I

p.(x) - p(x 1 ) = -F( x, ) [p( x) - p(x) - F' (x)AT (67)

First p (x), v(r), and p(x) are computed from these equations with

F' = 0. Then D is calculated from the following equation

4.. 3 log -
(68)D.• = 3 Pt3

If

2-2D , < - (69)

the calculations are complete, If

ID41I 2- (70)

Eqs. (65) to (67) are used to campute p (x),

v(x), and p(x) with F' in all the equations.

In these calculations the vaiue of & is +1 if x *

D, > 0, and & -= -1 if () < 0.

(2) Numerical Vetermination at a

Point on the Boundary

In this case the point x lies on *x3 *xi -*4

Curve I and is not necessarily one of the M-?SI-1

a priori fixed mesh points. Referring to FG. 13 TYPICAL POINT

Figure 13, the values of the field quantities ON THE INTERIOR

are known at x,, x 3 , x,, and they must be BOUNDARY
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determined at x. Note that x, and x need not be mesh points in the fixed

mesh bitt are both points on Curve "id hence on a particle path. The

point x is then founkd from

x v(x )At - (71)

where it has again been assumed that point x lies on t t, and points

xi x1 , x 4  'ie on t tI At.

The point x' is then located by

[(v c)(x ) ( - x3
3 2 N (72)

x3

Iwo cases can arise in Eq. (72):

'3 < x(73)X3 X- 3

and

X' > x 3  
(74)

If Eq. (73) is satisfied, then

33 x

X3 - x1I

and if Eq. (74) i,1 Fatisfied

6x -(76)

In either case, the values of the field quantities at x3 are

foutd by making the proper but obvious substitutions in Eq. (60).

Ihe finite difference equations which must be solved to yield

the field quantities are then:

S(x) - p'(x'31 p(x')c(x3) (v(x) - v(x 3 )] - F'( x )At (77)
3

p,,(x) -p(xi) p F(xj)p(O) - p1 x 1)] - F'(x,)At • (78)
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Along Curve I, p,%x) ;, v(x) is known. Then Eqs. (77) and (78) can be

used to determine the remaining two of the Lhree quantities p (x), V(x),

p(x). Again, the quantities are computed with F' = 0. The stress devia-

tor D,, is computed from Eq. (78). Then iU

I , I

3 y

the calculations are complete. Otherwise, the calc-ilation. are done

using Eqs. (77) and (78) with F'. Again e = -1 if D,, > 0 and 6 = -1 if
i D,, 0.

(3) Numerical Betermination
at a Point on the Shock
Wave

0 1 We now consider the point x to

be on the shock wave as shown in Figure 14

In this instance the points x and xi lie

cGn the shock wave and are not in general

fixed mesh points. The coordinate of x is
014 621 esi Ua 1 .4? given by

FIG. 14 TYPICAL POINT ON x ý U(xi)At * x1 (79)
THE SHOCK WAVE

where U(x1) is the shock wave velocity

at xI. The coordinate of x; is given by

1(v - c)(x2) + (V + C)(x )

X2 1-2 At + x (80)

Again in Eq. (80) two cases can arise: If x2 X2

IX2 - X2
X2

x1 - z2

and if %2< x 2

X2 - X4

2l Ax
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The values of the field quantities at x2 are found by applica-

tion of Eq. (60. The field quantities at x are then determined by the

equations

poU(X) = P(x)[U(x) - v(x)] (81)

p.(x) = PoU(x)V'(x) (82)

P1 (x) p (x•) • k(x;)c(x2)[v(x) - v(x2)] = F'(x,)At (83)

p()= 40 p(x)

pl(X) -o L f(p) . (R4)
3 P0

These equations are reduced to a single equation in p and the resulting

equation is solved by Newton's method of iteration.

(4) Numerical Determinatioti at Intrior Points
Near thz Boundary

In this case points x, and x3 will lie between Curve I and the

shock w ye, but point x 2 will lie outside of the region where the field

quantities are to be determined.

In this cuse z' and x', together with the field quantities at1 3

x, and x;, are determined by the same formulas as for the general interior

point, but the method differs for determining z2 and the values of the

fieli quaatities at x.

If X' as com~puted from

[(v * c)(zo) * (V + c)(xd)I
2 2 At * x (85)x 2 2

is greater than or equal to x0 , the whole computat :a proceeds as for

the general interior point, with the exception that

N2 S -o

X2 - zn
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If x2 is less than xo, we calculate t 2 by the formula

(v c)(x 0 ) + %V + c)(x l

2 t(x) - v(xo)t(xo) + xo x1

2 V c)(xo) +(V + c)(x ) (86)

2 - v(x 0 )
2

In this case
-t t(x 0 )

•2 AAt

and the values of the field quantities at t2, shown in Figure 15, are

found by using Eq. (60) with the point at x0 for A, and x for B.

iON

Ola NO */e M *3 N

FIG. 15 INTERIOR POINT
NEAR THE BOUNDARY

The finite difference equations foL determining the field

quantities at x are then given by Eqs. (65) through (68) together with

Eqs. (69) an(i (70), with the one exception being that At in Eq. (67)

must be replaced by (1 - X.2 )At.

(5) Numericel Letermination at an Interior Point

Near the Shock Wave

This is the final ty'e of point which must be considered and

is shown in Figure 16.
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ta

@52 &6I, ox( I' *1/OI

FIG. 16 INTERIOR POINT
NEAR THE SHOCK WAVE

In this the points .0 and x are on the shock v.ve, but the points

x, and x3 may both lie to the right of the shock wave or only x3 may lie

to the right. In any event, x2 will lie to the left.

ihe coordinate of x2 is found by

[( * )(x 2 ) * (v ÷ ) x )

2 -At xx2 2

and

T•2 x

02x0 - x

if x0 lies to the ieft of x or x1.

If x0 lie4 to the right of x or x, then x is used in place of

x0 in the above equat'on. Again the field quantities at x2 are found by

Eq. (60).

If x0 lies to the right of x,, then x, and the field quantities

at X, are computed as for the general interior point. If x, lies to theI

left of x1 , then x, may lie either to the left of or right of x0.

Thus for xc < x1 , x', is first computed from the formula

[v(x 2 ) ÷ ,( -O)]
X A - At xxI 2

and

X1 - XI d

X0 - r2
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if XI is less than xO. If the above is true, the field quantities at z1

are then fou.;d by application of Eq. (60). If, however, x; lies to the

right of x0 , the quantity t, must be computed through the formula

[ 2 _j t'(x) - U(xo)t(xo) + - x

t, I1(xo) Vx
I Jf - U(xo)

L 2

and
t', - t(xo)

At

The field quantities at t' are found from Eq. (60) with A being x0 and

and B replaced by x.

For z' several cases may also occur. We note, first, that the

case when X3 lies to the left of x0 corresponds to x being a general in-

terior point; therefore, we assume that x3 > x0. We first compute %'3 from

[(V - c)(xo) + (v - c)( A)]'= At'÷x
x3 2

and if z' < ,

i3 -02

X0 - X2

and the field quantities are readily found through Eq. (60).
If x'3 > 10, the quantity t can be computed from

r( c)(xo) * (v " c)(-x)l

U(Xo)t(xo) -x - x 2 f t(x)

U(x °) - c)( z 0) 2 I
and

6 t( - ( )

3At
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The values of the field quantities at t3 are then found again

from Eq, (60) with the appropriate but obvious substitutions.

This completei the method of computation at all points except

the initial point.

(6) Initial Values

In order to determine the initial values we use the boundary

conditions and the jump conditions across the shock wave. p,(x) or v(x)

is known at •he initial point. Then Eqs. (81), (82), and (84) can be

used to determine the remaining three of the four quantities U(x), v(x),

pfx), and p(x). Again the equations are reduced to a single equetion in

p(x) and the resulting equation is solved by the method of Newton. This

method has been programmed into the digital computer Burroughs 5500 and

IBM 7090.

c. Method of von Neumann and Hichtmyer

The equations of motion and the constitutive relationships can be

rewritten as

P - (-p +D) (87)

av (88)
- 3Xp b

p = f(p) (89)

D,, DN - Oy v
S- •E -- (90)

2G 2GT a (x

These equations apply only when 1D,,1 > y. In these equations, the dots

are the time derivatives along the particle path. A simple one-parameter

relaxation model hes been assumed, for purposes of discussion. Other

models can be treated in this way.

One of the methods of integration of the partial differential equa-

tions of the type expressed in Eqs. (87) to (90) is the method of

won Neumann and Hichtmyer iBefs. 14.15), asmetimes called the "Q" method.
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In this method, finite difference forms of the differential equatio-.s are

used. The necessit! of locating the shock position and of applying the

appropriate jump conditions across these shock waves is elcminated by

introducing a stress term defined as artificial viscous stress Q. This

stress is proportional to the gradient of vhe particle velocity and hlis

the effect of spreading the shock discontinuities over a few cells of the

finite difference network. The introduction of the viscous stress intro-

duces an error in addition to the error caused by the finite difference

approximation of the differential equation. However, this approximation,

as used and demonstrated, is quite good and very useful in solving many

practical problems. The amount of error can be controlled by controlling

the size of finite difference network and by the minimal use of Q. The

use of Q can be kept to a minimum by introducing the artificial viscosity

stress only at the shock fronts. Even though the shock discontinuities

are spread over a few cells of a finite difference network, the jump con-

ditions across the shock waves are still satisfied within a degree of

accuracy that can be controlled by tihe size of the finite difference net-

work and the magnitude of Q. With this Q, Eq. (87) changes to

, = 7 (-p + Q ID) (91)

The usual expression used for Q is

Q AP Iýp .2()

where A is a cýnstant. Then

4G\1 -at
""• p A, (Ta x D,, (93)

It is the stress term propor'ional to av/3x that provides dissipation

a'd spreading of the shock wave.

d. Modified Q Method

In the problem of wave propagation in stress-relixing solids, the

dissipation is built in througI the constitutive relations. This

so



dissipation, which comes through the physical mechanism of stress relaxa-

tion, can take the place of the arti'icially introduced Q in the method

of von Neumann. This can be seen in the following way. Equation (90)

can be simplified to yield

(½D = 2GT 7- - TD + y (94)

This equation an-' Eq. (87) yield

pJ, : ,- -p ÷ y - TO.ý + 2GT 7- -(95)
(IX Ox

Equation (95) contains a term proprtiral to ýviax, just as in Eq. (93).

This can provide the spreading of the plastic sheck wave. Thus we have

a dissipation term from the physical rjechanism rather than in artificial

one. However, in starting the proces- of integration aa artificial Q is

needed until the calculated stress deliator terms are sufficient to take

care of stabilizing the procedure of numeiiu m integation.

The stability and convergence of such method, are discussed in

Befs. 15 and 16.

Finite difference equmtions and -he coding used in nur;erical inte-

gration are similar to those discussel by Wilkins (Bef. 17).

S!I
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4, Decay of the Ela3tic Precursor

The decay of pressure at the elastic shock front can be calculated k
in a stress-relaxing material under restrictive assumptions. The model

for this discussion will be the one-dimensional Zener type of macroscopic I
relaxing material. As discussed in Section III-2-bUl), the constitutive

relation for this material will be

2- - F' (p, o,)

A restrictive assumption which makes some analytical calculation

possible is that the p. - p relationship in the unrelaxed (i.e., elastic)

material is given by

POp =A(l-. ) (96)

This relationship is similar to the hydrodynamic type of relation-

'hip. It will introduce a very seriots restriction on the application ol

the results; however, a trend might be indicated.

Along the leading characteristic a,

I
dp .+ PC dv . -F # (97)

dt dt

and the path of the characteristic a is defined by

dx

Ft v + c (98)

The constant A can be written as

A * , 0 U2 (99)

where U. is a quantity with dimenxions of velocity.

At the front-running shock wavc in a relaxing material the jump

conditions are elastic. Then the iront .unning shock velocity U can be

ce)culated from the'jump condition.s.
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P,
S- (100)

From Eqs. (98) and (99)

U2 (101)

Hence

Uen Uo , (102)

Then the jump condition expressing the conservation of mass yields-the

oarticle velocity

V 1 (103)

dp. U p 2 pUO

k2 c i - . (104)
dp P

The path of the leading characteristic a can be calculated from Eq. (97)

- t) V + C a Uo (105)

Thus the leading characteristic a and the front-running (or elastic)-

shock wave coincide. Along the elastic shock wave the compatibility

equation [Eq. (97)] corresponding to the a characteristic is valid. By

usiir the expression for t from Eq. (104), Eq. (97) becomes

dp. dv
t+ PoUo-t = -F (106)

Along the front-running shock wave the jump conditions yield

P. pov p= 1 POUov (107)
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.hen Eq. (106) becomes

dp, F'
S(H - 10R)dt 2

This equation gives the rate of decay 3t the wave front. If F' is given by

F' = T (109)

'Then

dp. p. - p,

dt 2T

dp. 1
- dt (1M1)

pz - P, 2T

and

P P, - Be-'/ 2T (112)

where B is an arbitrary constant. The constants B and T can be deter-

mined from experimental results. If F' is given by

p1 - p1 (cr,p)

T1

and

p , " ( 1 1 3 )

then

dp 1. I

dt 2 (114)

-- - -T/ 2

p1  p + (p1 (0) - p l]e (115)

and
dp1
d - 2, P - [p,(O) - P]e / - p} . (116)

64



* e.,

4P 1 P [p,(O) - t] _,', 2- + - = - e 2+ (117)
dt 2 T1  2T1  2T(

The solution to this differential equation is

p ( )-t/ 2T 4  -0 - p -/2p, = Ale 4.e 2 +p

If the initial amplitude of the precursor is different from the initial

yield value pi(O), then A, is not zero and the relaxation constant T

ý.Pkes care of the time required to relax toward the yield value and the

formation of a two-wave structure. This two-wave structure is continually

changing with decreasing amplitude of the precursor toward the st~tic

value. This is taken care of by the relaxation constant T2.

These calculations are similar to the calculation by Taylor, and any

evaluation of relaxation phenomena in this way is based on some very re-

strictive assumptions, as discussed earlier.

Any accurate evaluation of the relaxation phenomena must be based on

realistic p. - p relationships and the models based on continuum mechanics.

At prescnt this can be done only by numerical techniques. Furthermore,

these methods provide some freedom in the choice of parameters in the re-

laxatiot. model, and thus the experimental results including the flow behind

the wave f-ont can be interpreted more accurately.
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5. Discussion ef Some Numerical Results

a.* Wave CjAculations

Experimental observations in hard and soft aluminum indicate a two-

wave structure at very early times; the amplitude of the elastic wavc

decreases with time. The two-parameter macroscopic relLxation model was

used in a modified Q code to correlate the experimental results. The

properties of aluminum used in the calculation are as follows:

P0 1.2.785 gm/cc

p = a(p/p0 - 1) + b(p/p 0 - 1)2+ c(p/pn I)'

a = 0.755 Mbar

b = 1,29 Mbar

c = 1.197 Mbar

y = 0.0025 Mbar

G = 0.287 Mbar

The relaxation constants T, and T2 were intridticed ehrlier in

Section lII-2-b(l). T1 controls the rate of formation of a two-wave

structure; expetimental observation indicates that it should be very

small. T2 ..governs the rate of decy *of the precursor amplitude.

The values of T1 and T2 used in the calculation are 0.005 and 3.72

4sec, respectively. These values were cIosen by trial and error to

match approximately the observed precursor decay-they do not represent

a best fit. Figure 17 ihows the decay of the precursor amplitude with

the penetration depth. A comparison of observed and computed precursor

decay is shown in Fig. 18.

The curve in Fig. 19 gives the variation of o, with distance for

selected times when the boundary is subjected to a fixed velocity rather

than a fixed stress. This curve was computed by the characteristic method

for a one-parameter model; hence the profiles do not appear as two separate

waves as observed experimentally. Note, however, the pronounced stress

relaxation at the boundary. Computations like this are needed for the two-

parameter model, so that a more direct comparison with experiment can be

made.
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"IG. 19 STRESS PROFILES FOR CONSTANT VELOCITY INPUT AT THE INTERIOR BOUNDARY

b. Computation from the Characteristic Code

In the problem of stress relaxation we have a dissipation built in

through the constitutive relations. Ini the modified 0 method described

in Section lll-3-d, the artificial dissipation has been kept to a minimum;

it is confined to the starting of the process of computation. Hlowever,

one weakness of tie method is that the elastic shock front is not -learly

defined and the elastic wave amplitude cannot be predicted exactly. To

overcome these deficiencies, the characteristic code is the most accurate

method available. The error in this method is due only to the approximation

of the differential equation by a finite difference scheme. This can be

controlled by suitably selecting the finite difference mesh work, depend-
ing on the desired degree of accuracy.
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Early numerical calculations were done for quartz for purposes of

illustration of the stress-relaxation properties. (At the time these

calculations were made, experimental results on aluminunm were not avail-

able.) A one-parameter macroscopic relaxation model was used.

The p - p relationship for quartz was assumed to b&

p = 0.3919 (p/po - 1) Mbar

PO = 2.5 gm/cc

Other parameters used were:

y = 0.002 Mbar

G = 0.37 Mbar

T = 0.03 kpsec.

Figure 20 is an x - t diagram showing the positions of the left

boundary and the position of Plastic shocd front with time. Figure 21

iilustrstes the distribution of p. with the Eulerian coordinate x for

different values of time t. In the computation the stress on the left

boundary was kept constant at 0.1 Mbar. The curves indicate the results

obtained by the method of characteristics; the points illustrate the

values obtained by the modified Q method.

Figure 22 illustrates the decay of the elk-tic shock. Figures 23

and 24 illustrate the distributions of Lhe phirticle veiocity and the

specific volume with the Eulerian coordinate x for diiferent values of

time t.
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c. Dislocation Model

Figures 25-29 illustrate the results obtained from numerical calcula-

tions (von Neumann and Richtmyer method) when the dislocation model for

stress rclaxation was used [see Section III-2-b-(2)]. Again, the cal-

culations were performed only for purposes of illustration. Iron, which

exhibits pronounced stress relaxation, was used for calculations. The

following vaiues were used for the constants in the constitutive relation:

bN = 5.0 cm-t

B 0.0198 Mbar
V 0. :2' cm//Lsec

T, 1.0 A.sec

2= 4.0 asec

0.035--
8~. 080880

0

o @0
L•3 0o

0@00
0.025 -0 00

00 00

0.020 00 0
. @0o

S0.015 • 
00

0 NO DISLOCATION

0.010 - MULTIPLICATION 8

* g a6000 (megobar A £te]-

0.005 bNte* 7.5 cm-1

00
0 I .... p- I•

0 0.1 0.2 0.3
X-cm

*A-B70| - I?

FIG. 25 SHOCK PROFILES SHOWING THE EFFECT OF DISLOCATION MULTIPLICATION
Profiles in iron at 0.25 and 0.45 psc.
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FIG. 26 SHOCK PROFILES SHOWING THE EFFECT OF INCREASING g.
Profiles in iron at 0.25 and 0.45 psec.
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Figure 25 shows the distribut ion of p, with the Eulerian coordinate x for

Iwo specific times: t ý 0.25 psec and t = 0.45 Ftsec. This figure illus-

trates the effect of dislocation multiplication; the open circles are for

no ,tislocation multiplication, and the dots are for g = 6000 (Mbar-4sec)-i

and bNt0 = 7.5 cm 1. The effects of dislocation multiplication are a more

pronounced elastic precursor and a steeper plastic shock wave.

Figure 26 illustrates the effect of clianging g. Two values of g

were used: g ý 60QC (Mbar-ýtsec)-' and g = 20,000 (Nlbar-ýLsec)-'. A value

of 25 cma1 was used for bN1 o in both cases. The higher value of g reduced

the precursor amplitude significantly.

Figure 27 illustrates the variation of bNto for a fixed value of g

of 6000 (Mbar-kksec)-l. Two values of bNto,

bN o 7.5 cm-1

and

bN 25.0 cm'" are compared.

The larger value of bNto has the lower amplitude of elastic precursor.

Figures 28 and 29 illustrate the decay of the amplitude of the

elastic shock wave with time for different values of B and N.0

These parameter stuties illustrate th- effect of various material

constants on s!;ock propagation.

d. Attenuation of Peak Press ure

One of the important problems of practical i'rterest is th, attenua-

Lion of peak pr.essure of a pulse of finite duration. A study of this

phenomenon requires a know ledge of the unloading behavior and the

constitutive relations during unloading. The constitutive relations for

oastiing are nov understood in some cases where stress relaxation is pre-

sent, however, there ae no experimental (fats available on unloading

under conditions such that stress relaxation is important.
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ro obtain some information regarding the trend that the decay of peak

pressure might follow when stress relaxation is present, the following

calculation has been performed. It has been assumed that the relaxing

constitutive relation is the same in loading as well as in unloading.

The material and the constants used are the same as in the case of the

computation with the characteristic code. A pressure of 0.1 Mbar is

applied at .ime t = 0; the subsequent loading history is shown in Fig. 30.

This figure illustrates the decay of peak pressure with time. The dashed

line cu.responds to elastic-plastic theory without stress relaxation.
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FIG. 30 CALCULATED DECAY OF PEAK PRESSURE IN ALUMINUM
WITH AND WITHOUT STRESS RELAXATION
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6. Summary

In summary, the major results of the theoretical part of this con--

tract are the development of a mathematical model of stress relaxation,

together with numerical results on the rate of decay of the elastic pre-

cursor wave, and some computed wave profiles. The numerical results have

been correlated with experimental results and it is shown that the two-

parameter model of stress relaxation predicts experimental resilts more

accurately than the one parameter model. The computations have been per-

formed using the meti.od of characteristics and the so-called "Q" method

of von Neumann and Richtmyer. The reasons for the expenditure of effort

on the method of charactteristics are:

1. The method is rmore accurate th-n the "Q" method. It was there-

fore possible to study the effect of stress relaxation in the absence of

artificial viscosity, then to use the "Q" method to study stress eclaxation,

and to compare the difference in the results obtained by the two methods.

2. Tae "Q" method is highly inaccurate for situations involving re-

flected waves; however, results obtained by the method of characteristics

can be used to indicate correction terms which could be added to "Q"

method codes.

Another result of the present work is that the term involving stress

relaxation provides a real viscosity and hence the artificial viscosity

term may be omitted from "Q" codes when stress relaxation is present. It

should be pointed out that the stress relaxation models employed here are

most applicable to metals and it is quite possible that thermodynamic

effects will be of greater imprtaoace in plastics than stiess relaxation;

this ý-int requires further study.

It is to be noted that the basic differential equations used in the

present work dit'er from those used in the PUFF codes only in the con-

stitutive relationb which are used. It is not a difficult matter to in-

corporate the stress -elaxation model into a PUFF code. Some work on

expansion of the models and more correlation vith experimental results

should be accoomrlishei before these models are used.
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APPENDIX I

SHOTS FIRED DURING THIS PROGRAM

All the shots fired under the present contract are listed below,

with an indication of the puipose for firing each shot. Some shots

werc of a development nature and did not contribute significant data

points.
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APPENDI X I

SHOT NO. TYPE OF PURPOSE
GAGE

12,810 Quartz Calibration of quartz gages

12,812 Quartz Calibration of quartz gages

12,8!3 Quartz Calibration of quartz gagea

12,811 2 Quartz Development of technique to mount, ouartz in projectile

12.053 Quartz Look for elastic rave in Plexiglas

12,052 Quartz Look at elastic wave in stock 2021 aluminum

12,050 Manganin(6) Look at elastic wave in stock 2024 aluminim
12,051 Manganin(b) Look at elastic wave in stock 2024 aluminum

12,172 Quartz Study elastic wave in snnetaed 2024 aluminum

12,178 Quartz Study elastic wave in annealed 2024 aluminum

12,170 Quartz Study elastic wave in annea!ed 2024 aluminum

12,175 Quartz Study elastic wave in annealed 2024 aiuminum

12,175 Quartz Study elastic wave in annealed 2024 aluminum

12,807 Quartz Study elastic wave in hardened 2024 aluminum and look for plastic
wave decay

12,808 Quartz Study elastic wave in hardened 2024 alumirnum and look for plastic
wave decay

12,173 Quartz Study elastic wave in hardened 2024 aluminum

12,171 Quartz Study elastic wave in hardened 2024 aluminum

12,174 Quartz Study elastic rave in hardened 2024 aluminum

12,512 Manganin Study wave profile in polyethylene

12,512 2 Manganin Study wave profile in polyethylene

12,513 2 Mangarnin Study wave profile in polyethylene

12,%14 2 Manganin Study wave profile in polyethylene

12,515 2 Manga-min Study wave profile in polyethylene

12, Slt ? Manganin Study wave profile in polyethylene

12. 317 1 Manganin Study wave profile in polyethvlene

12.804 2 11samatn Study wa.e profile in polyethylene

12.e05 2 Manaslit, Study wave profile in polyethylene

12.806 2 Manganin Study wave profile in polyethylene

(a) agalfs wair* 4ieltrceloy Insulatead fre 4l plate b? O.y0 l-taach Itlar foil Oad potLed a C-7 OpO1I.

acgaelea wirv issalat*4 with O.01i-tas- *viar a"d ourroeated& by laemi.. blecks.
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APPENDIX II

CHARACTERISTIC EQUATION BASED ON THE EXISTENCE
THEOREM OF CAUCHY-KOIALEWSKI (Ref. 18)

We begin with the equations expressing conservation of mass and

momentum

* _v

v-3 = 0 ())

t vx + p- = 0 (2)

We write the constitutive relations in the form

_(3- . +• ,r

iP 3,, (3-)
2 'S0s

whe re

Si g =2GT

These equations may be 'osive, lent y rewritten in the form

, . . . . 0 (S)t ox
"* v - - 0 (6)

)p d df ( , 0 (7)

t t



-2 6v + v + ] J g(SI - OY) (8)

Although many equivalent definitions of characteristics are possible,

we adapt here the one based on the existence proof of Cauchy-Kowalewski.

The reason for this choice is that it gets us to the desired goal along

the most direct path.

We omit rbvious details and proceed to look for curves f(x,t) = con-

stant, along Which the set of Eqs. (5) - (8) cannot be solved as an

algebraic system for tile partial derivatives 1S1/Of, ap/lf, 4v/0f and

Ti c e~. 'N ~S 1 f ?~S1 af

•X ýf ax 'f t

etc., we obtain the following set of equations:

3 ' • ( f ? ' "x - gS - GA : 0
The S ?ari f the cft(•t oV

? f \j[x ?

77 0 jV

2 z.1 !is I
+ -j'x~- gkS, z'

The. matrix of' Lthe coefficients~ of

Ox f O f aif

'so



ýX ax a

0 ( (if 0 if

N ax

S+ V 0 0 4 •

and the determinant of this matrix is

+ V - p d+ V

'a 0 [T (ý ( aX 3 3k x/ 2G dp x

There will be no solution for *,1'/f etc. if this determinant vanishes.

On f = constant 3f/at = -(f/ax)(dx/dt) so that the determiaant vanishes

when

dx = v, v, 4 (9)

dp 3s.L

The four roots given by Eq. (9) are the characteristics of the govern-

ing differential equations.
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APPENDIX III

CEPATIBILITYI IITIOiS

The governing differential equations are:

---- ap - vI-0?x Px t + 07 1)

ap ap av 0

'381 as i 4G av
+ v - - -3 5- 2Gg(S 1  0Y) (3)

S(P) 0 (4)

The four characteristics are:

dx
S- VIVl.V + c

(It

where

dT 4G
dp 3p

If we multiply Eq. (I) by c, add Eq. (3) an4 subtroct Eq. (4), we

obtain

.•- S P) C) (S 1-p) p-c * ( -•• .- ' ,))

a. a x()
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Then using Eq. (2) we get

t(S P) + (V +C) -a (S, -P) - pc i (v +c) = 2Gg(S 1  ý Y)

Thus we have

d(S1 - p) - pcdv - 2Gg(S 1 - OY)dt = 0 (5)

along

dx
- = V + C

dt

and

J(S1  p) + pdi, 2Gg(S - 6dt= 0 (6)

along

dx

dt V - C

fly using Eq. (2) in Eq. (3) we geL

4G
"dS + dp - 2Gg (S  t-IY)dt 0 (7)

3p

along

dx

dt

and Eq. (4) can b?- wiitten directly as

dp- c2 d'd, 0 (8)

along

dx

dt

Equations (5), (b), (17). and (8) a-e the conpavibiitý equntiona

for a %tress-relaxing medium.

ig
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